1,088 research outputs found

    Angular Upsampling in Infant Diffusion MRI Using Neighborhood Matching in x-q Space

    Get PDF
    Diffusion MRI requires sufficient coverage of the diffusion wavevector space, also known as the q-space, to adequately capture the pattern of water diffusion in various directions and scales. As a result, the acquisition time can be prohibitive for individuals who are unable to stay still in the scanner for an extensive period of time, such as infants. To address this problem, in this paper we harness non-local self-similar information in the x-q space of diffusion MRI data for q-space upsampling. Specifically, we first perform neighborhood matching to establish the relationships of signals in x-q space. The signal relationships are then used to regularize an ill-posed inverse problem related to the estimation of high angular resolution diffusion MRI data from its low-resolution counterpart. Our framework allows information from curved white matter structures to be used for effective regularization of the otherwise ill-posed problem. Extensive evaluations using synthetic and infant diffusion MRI data demonstrate the effectiveness of our method. Compared with the widely adopted interpolation methods using spherical radial basis functions and spherical harmonics, our method is able to produce high angular resolution diffusion MRI data with greater quality, both qualitatively and quantitatively.Comment: 15 pages, 12 figure

    Single- and Multiple-Shell Uniform Sampling Schemes for Diffusion MRI Using Spherical Codes

    Get PDF
    In diffusion MRI (dMRI), a good sampling scheme is important for efficient acquisition and robust reconstruction. Diffusion weighted signal is normally acquired on single or multiple shells in q-space. Signal samples are typically distributed uniformly on different shells to make them invariant to the orientation of structures within tissue, or the laboratory coordinate frame. The Electrostatic Energy Minimization (EEM) method, originally proposed for single shell sampling scheme in dMRI, was recently generalized to multi-shell schemes, called Generalized EEM (GEEM). GEEM has been successfully used in the Human Connectome Project (HCP). However, EEM does not directly address the goal of optimal sampling, i.e., achieving large angular separation between sampling points. In this paper, we propose a more natural formulation, called Spherical Code (SC), to directly maximize the minimal angle between different samples in single or multiple shells. We consider not only continuous problems to design single or multiple shell sampling schemes, but also discrete problems to uniformly extract sub-sampled schemes from an existing single or multiple shell scheme, and to order samples in an existing scheme. We propose five algorithms to solve the above problems, including an incremental SC (ISC), a sophisticated greedy algorithm called Iterative Maximum Overlap Construction (IMOC), an 1-Opt greedy method, a Mixed Integer Linear Programming (MILP) method, and a Constrained Non-Linear Optimization (CNLO) method. To our knowledge, this is the first work to use the SC formulation for single or multiple shell sampling schemes in dMRI. Experimental results indicate that SC methods obtain larger angular separation and better rotational invariance than the state-of-the-art EEM and GEEM. The related codes and a tutorial have been released in DMRITool.Comment: Accepted by IEEE transactions on Medical Imaging. Codes have been released in dmritool https://diffusionmritool.github.io/tutorial_qspacesampling.htm

    Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data

    Get PDF
    Due to its causal semantics, Bayesian networks (BN) have been widely employed to discover the underlying data relationship in exploratory studies, such as brain research. Despite its success in modeling the probability distribution of variables, BN is naturally a generative model, which is not necessarily discriminative. This may cause the ignorance of subtle but critical network changes that are of investigation values across populations. In this paper, we propose to improve the discriminative power of BN models for continuous variables from two different perspectives. This brings two general discriminative learning frameworks for Gaussian Bayesian networks (GBN). In the first framework, we employ Fisher kernel to bridge the generative models of GBN and the discriminative classifiers of SVMs, and convert the GBN parameter learning to Fisher kernel learning via minimizing a generalization error bound of SVMs. In the second framework, we employ the max-margin criterion and build it directly upon GBN models to explicitly optimize the classification performance of the GBNs. The advantages and disadvantages of the two frameworks are discussed and experimentally compared. Both of them demonstrate strong power in learning discriminative parameters of GBNs for neuroimaging based brain network analysis, as well as maintaining reasonable representation capacity. The contributions of this paper also include a new Directed Acyclic Graph (DAG) constraint with theoretical guarantee to ensure the graph validity of GBN.Comment: 16 pages and 5 figures for the article (excluding appendix
    • …
    corecore